Prednisolone Sodium Phosphate
Prednisolone Sodium Phosphate Prescribing Information
Prednisolone sodium phosphate oral solution is indicated in the following conditions:
The initial dose of prednisolone sodium phosphate oral solution, (15 mg prednisolone base) may vary from 1.67 mL to 20 mL (5 to 60 mg prednisolone base) per day depending on the specific disease entity being treated. In situations of less severity, lower doses will generally suffice while in selected patients higher initial doses may be required. The initial dosage should be maintained or adjusted until a satisfactory response is noted. If after a reasonable period of time, there is a lack of satisfactory clinical response, prednisolone sodium phosphate oral solution should be discontinued and the patient placed on other appropriate therapy.
In the treatment of acute exacerbations of multiple sclerosis, daily doses of 200 mg of prednisolone for a week followed by 80 mg every other day or 4 to 8 mg dexamethasone every other day for one month have been shown to be effective.
In pediatric patients, the initial dose of prednisolone sodium phosphate oral solution may vary depending on the specific disease entity being treated. The range of initial doses is 0.14 to 2 mg/kg/day in three or four divided doses (4 to 60 mg/m2bsa/day).
The standard regimen used to treat nephrotic syndrome in pediatric patients is 60 mg/m2/day given in three divided doses for 4 weeks, followed by 4 weeks of single dose alternate-day therapy at 40 mg/m
2/day.
The National Heart, Lung, and Blood Institute (NHLBI) recommended dosing for systemic
| Cortisone, 75 | Triamcinolone, 12 |
| Hydrocortisone, 60 | Paramethasone, 6 |
| Prednisolone, 15 | Betamethasone, 2.25 |
| Prednisone, 15 | Dexamethasone, 2.25 |
| Methylprednisolone, 12 |
Systemic fungal infections. Hypersensitivity to the drug or any of its components.
Drugs such as barbiturates, phenytoin, ephedrine, and rifampin, which induce hepatic microsomal drug metabolizing enzyme activity may enhance metabolism of prednisolone and require that the dosage of prednisolone sodium phosphate oral solution be increased.
Increased activity of both cyclosporin and corticosteroids may occur when the two are used concurrently. Convulsions have been reported with this concurrent use.
Estrogens may decrease the hepatic metabolism of certain corticosteroids thereby increasing their effect.
Ketoconazole has been reported to decrease the metabolism of certain corticosteroids by up to 60% leading to an increased risk of corticosteroid side effects.
Coadministration of corticosteroids and warfarin usually results in inhibition of response to warfarin, although there have been some conflicting reports. Therefore, coagulation indices should be monitored frequently to maintain the desired anticoagulant effect.
Concomitant use of aspirin (or other non-steroidal anti-inflammatory agents) and corticosteroids increases the risk of gastrointestinal side effects. Aspirin should be used cautiously in conjunction with corticosteroids in hypoprothrombinemia. The clearance of salicylates may be increased with concurrent use of corticosteroids.
When corticosteroids are administered concomitantly with potassium-depleting agents (i.e., diuretics, amphotericin-B), patients should be observed closely for development of hypokalemia. Patients on digitalis glycosides may be at increased risk of arrhythmias due to hypokalemia.
Concomitant use of anticholinesterase agents and corticosteroids may produce severe weakness in patients with myasthenia gravis. If possible, anticholinesterase agents should be withdrawn at least 24 hours before initiating corticosteroid therapy.
Due to inhibition of antibody response, patients on prolonged corticosteroid therapy may exhibit a diminished response to toxoids and live or inactivated vaccines. Corticosteroids may also potentiate the replication of some organisms contained in live attenuated vaccines. If possible, routine administration of vaccines or toxoids should be deferred until corticosteroid therapy is discontinued.
Because corticosteroids may increase blood glucose concentrations, dosage adjustments of antidiabetic agents may be required.
Corticosteroids may suppress reactions to skin tests.
Prednisolone Sodium Phosphate Oral Solution is a dye free, pale to light yellow solution. Each 5 mL (teaspoonful) of Prednisolone Sodium Phosphate Oral Solution contains 20.2 mg prednisolone sodium phosphate (15 mg prednisolone base) in a palatable, aqueous vehicle.
Inactive ingredients: Prednisolone Sodium Phosphate Oral Solution equivalent to 15 mg prednisolone per 5 mL contains the following inactive ingredients: anti-bitter mask, edetate disodium, glycerin, grape flavor, high fructose corn syrup, hydroxyethylcellulose, methylparaben, potassium phosphate dibasic, potassium phosphate monobasic, purified water, and saccharin sodium.
Prednisolone sodium phosphate occurs as white or slightly yellow, friable granules or powder. It is freely soluble in water; soluble in methanol; slightly soluble in alcohol and in chloroform; and very slightly soluble in acetone and in dioxane. The chemical name of prednisolone sodium phosphate is: pregna-1,4-diene-3,20-dione,11,17-dihydroxy-21-(phosphonooxy)-,disodium salt, (11β)-. The empirical formula is C21H27Na2O8P; the molecular weight is 484.39. Its chemical structure is:

Pharmacological Category: Glucocorticoid