Talicia
(amoxicillin / omeprazole / rifabutin)Dosage & Administration
By using PrescriberAI, you agree to the AI Terms of Use.
Talicia Prescribing Information
Helicobacter pylori Infection
TALICIA is indicated for the treatment of Helicobacter pylori infection in adults [see Clinical Studies (14 )].
Usage
To reduce the development of drug-resistant bacteria and maintain the effectiveness of TALICIA and other antibacterial drugs, TALICIA should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Recommended Dosage
Administer four (4) TALICIA capsules three times daily (at least 4 hours apart, e.g., morning, mid-day, and evening) with food for 14 days. Instruct patients to swallow the TALICIA capsules whole, with a full glass of water (8 ounces). Each dose (4 capsules) of TALICIA includes rifabutin 50 mg, amoxicillin 1,000 mg and omeprazole 40 mg. Do not crush or chew TALICIA capsules. Do not take TALICIA with alcohol.
Missed Doses
- If a dose is missed and the next dose is not within 4 hours, administer the missed dose as soon as possible.
- If a dose is missed and the next dose is within 4 hours, administer the missed dose as soon as possible and delay the next dose to ensure there are at least 4 hours between two doses.
Each TALICIA delayed-release capsule contains omeprazole 10 mg (equivalent to 10.3 mg of omeprazole magnesium), amoxicillin 250 mg and rifabutin 12.5 mg. The capsules are orange, opaque, with “RHB” imprinted in black on the capsule cap and “105” imprinted in black on the capsule base.
Pregnancy
Risk Summary
Based on animal reproduction studies, TALICIA may cause fetal harm when administered to pregnant women. There are no adequate and well controlled studies of amoxicillin, omeprazole, or rifabutin (used separately or together) in pregnant women. Use of TALICIA is generally not recommended for use in pregnancy. If TALICIA is used during pregnancy, advise pregnant women of the potential risk to a fetus.
Omeprazole: Available epidemiologic data do not demonstrate an increased risk of major congenital malformations or other adverse pregnancy outcomes with first trimester omeprazole use. Reproduction studies in rats and rabbits resulted in dose-dependent embryo-lethality at omeprazole doses that were approximately 1.13 to 11 times an oral human dose of 120 mg.
Fetal malformations were not observed in animal reproduction studies with administration of oral esomeprazole (an enantiomer of omeprazole) magnesium in rats and rabbits during organogenesis with doses about 23 times and 14 times, respectively, of an oral human dose of 120 mg esomeprazole or omeprazole. Changes in bone morphology were observed in offspring of rats dosed through most of pregnancy and lactation at doses equal to or greater than approximately 11 times an oral human dose of 120 mg esomeprazole or omeprazole. When maternal administration was confined to gestation only, there were no effects on bone physeal morphology in the offspring at any age [see Data].
Amoxicillin: Available data from published epidemiologic studies and pharmacovigilance case reports over several decades with amoxicillin use have not established drug-associated risks of major birth defects, miscarriage, or adverse maternal or fetal outcomes [see Data]. No adverse developmental effects were observed in animal reproduction studies with administration of amoxicillin to pregnant mice and at doses up to 3 to 6 times an oral human dose of 3 grams.
Rifabutin: Fetal malformations were not observed in rat or rabbit reproduction studies given rifabutin at dose levels up to 200 mg/kg (6 to 13 times the recommended human dose). In rats, given rifabutin at 200 mg/kg/day (about 6 times the recommended human daily dose), there was a decrease in fetal viability. Increased skeletal anomalies were observed in rats and rabbits at 40 and 80 mg/kg/day, respectively (corresponding to approximately an equivalent dose and 5 times the recommended human daily dose); maternal toxicity was noted at 80 mg/kg in rabbits [see Data].
The estimated background risks of major birth defects and miscarriage for the indicated population are unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the US general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.
Data
Human Data
Omeprazole
Four published epidemiological studies compared the frequency of congenital abnormalities among infants born to women who used omeprazole during pregnancy with the frequency of abnormalities among infants of women exposed to H2-receptor antagonists or other controls.
A population-based retrospective cohort epidemiological study from the Swedish Medical Birth Registry, covering approximately 99% of pregnancies, from 1995 to 99, reported on 955 infants (824 exposed during the first trimester with 39 of these exposed beyond first trimester, and 131 exposed after the first trimester) whose mothers used omeprazole during pregnancy. The number of infants exposed in utero to omeprazole that had any malformation, low birth weight, low Apgar score, or hospitalization was similar to the number observed in this population. The number of infants born with ventricular septal defects and the number of stillborn infants was slightly higher in the omeprazole-exposed infants than the expected number in this population.
A population-based retrospective cohort study covering all live births in Denmark from 1996 to 2009, reported on 1,800 live births whose mothers used omeprazole during the first trimester of pregnancy and 837,317 live births whose mothers did not use any proton pump inhibitor. The overall rate of birth defects in infants born to mothers with first trimester exposure to omeprazole was 2.9% and 2.6% in infants born to mothers not exposed to any proton pump inhibitor during the first trimester.
A retrospective cohort study reported on 689 pregnant women exposed to either H2-blockers or omeprazole in the first trimester (134 exposed to omeprazole) and 1,572 pregnant women unexposed to either during the first trimester. The overall malformation rate in offspring born to mothers with first trimester exposure to omeprazole, an H2-blocker, or were unexposed was 3.6%, 5.5%, and 4.1% respectively.
A small prospective observational cohort study followed 113 women exposed to omeprazole during pregnancy (89% with first trimester exposures). The reported rate of major congenital malformations was 4% in the omeprazole group, 2% in controls exposed to non-teratogens, and 2.8% in disease-paired controls. Rates of spontaneous and elective abortions, preterm deliveries, gestational age at delivery, and mean birth weight were similar among the groups.
Several studies have reported no apparent adverse short-term effects on the infant when single dose oral or intravenous omeprazole was administered to over 200 pregnant women as premedication for cesarean section under general anesthesia.
Amoxicillin
While available studies cannot definitively establish the absence of risk, published epidemiological data and post-marketing case reports have not reported a consistent association with amoxicillin and major birth defects, miscarriage, or adverse maternal or fetal outcomes when amoxicillin was used during pregnancy. Available studies have methodologic limitations, including small sample size, retrospective data collection, under-capture of non-live births, exposure misclassification and inconsistent comparator groups.
Rifabutin
Small retrospective observational studies evaluated the use of rifabutin (in combination with other drugs) for treatment of tuberculosis during pregnancy. Available studies were inconclusive in determining whether rifabutin use during pregnancy was associated with adverse effects in the pregnant woman or neonates.
Animal Data
Omeprazole
Reproductive studies conducted with omeprazole in rats at oral doses up to 138 mg/kg/day (about 11 times an oral human dose of 120 mg on a body surface area basis) and in rabbits at doses up to 69.1 mg/kg/day (about 11 times an oral human dose of 120 mg on a body surface area basis) during organogenesis did not show fetal malformations. In rabbits, omeprazole in a dose range of 6.9 to 69.1 mg/kg/day (about 1 to 11 times an oral human dose of 120 mg on a body surface area basis) administered during organogenesis produced dose-related increases in embryo-lethality, fetal resorptions, and pregnancy disruptions. In rats, dose-related embryo/fetal toxicity and postnatal developmental toxicity were observed in offspring resulting from parents treated with omeprazole at 13.8 to 138.0 mg/kg/day (about 1 to 11 times an oral human dose of 120 mg on a body surface area basis), administered prior to mating through the lactation period.
Esomeprazole
The data described below was generated from studies using esomeprazole, an enantiomer of omeprazole. The animal to human dose multiples are based on the assumption of equal systemic exposure to esomeprazole in humans following oral administration of either 120 mg esomeprazole or 120 mg omeprazole.
No effects on embryo-fetal development were observed in reproduction studies with esomeprazole magnesium in rats at oral doses up to 280 mg/kg/day (about 23 times an oral human dose of 120 mg on a body surface area basis) or in rabbits at oral doses up to 86 mg/kg/day (about 14 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis) administered during organogenesis.
A pre-and postnatal developmental toxicity study in rats with additional endpoints to evaluate bone development was performed with esomeprazole magnesium at oral doses of 14 to 280 mg/kg/day (about 1 to 23 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis). Neonatal/early postnatal (birth to weaning) survival was decreased at doses equal to or greater than 138 mg/kg/day (about 11 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis). Body weight and body weight gain were reduced and neurobehavioral or general developmental delays in the immediate post-weaning timeframe were evident at doses equal to or greater than 69 mg/kg/day (about 6 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis). In addition, decreased femur length, width and thickness of cortical bone, decreased thickness of the tibial growth plate and minimal to mild bone marrow hypocellularity were noted at doses equal to or greater than 14 mg/kg/day (about equivalent to the oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis). Physeal dysplasia in the femur was observed in offspring of rats treated with oral doses of esomeprazole magnesium at doses equal to or greater than 138 mg/kg/day (about 11 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis).
Effects on maternal bone were observed in pregnant and lactating rats in the pre-and postnatal toxicity study when esomeprazole magnesium was administered at oral doses of 14 to 280 mg/kg/day (about 1 to 23 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis). When rats were dosed from gestational day 7 through weaning on postnatal day 21, a statistically significant decrease in maternal femur weight of up to 14% (as compared to placebo treatment) was observed at doses equal to or greater than 138 mg/kg/day (about 11 times an oral human dose of 120 mg esomeprazole or omeprazole on a body surface area basis).
A pre-and postnatal development study in rats with esomeprazole strontium (using equimolar doses compared to esomeprazole magnesium study) produced similar results in dams and pups as described above.
A follow up developmental toxicity study in rats with further time points to evaluate pup bone development from postnatal day 2 to adulthood was performed with esomeprazole magnesium at oral doses of 280 mg/kg/day (about 23 times an oral human dose of 120 mg on a body surface area basis) where esomeprazole administration was from either gestational day 7 or gestational day 16 until parturition. When maternal administration was confined to gestation only, there were no effects on bone physeal morphology in the offspring at any age.
Amoxicillin
Reproduction studies have been performed in mice and rats at doses up to 2000 mg/kg (3 and 6 times the 3 g human dose, based on body surface area). There was no evidence of harm to the fetus due to amoxicillin.
Rifabutin
Reproduction studies have been carried out in rats and rabbits given rifabutin using dose levels up to 200 mg/kg (about 6 to 13 times the recommended human daily dose based on body surface area comparisons). No fetal malformations were observed in either species. In rats, given 200 mg/kg/day, (about 6 times the recommended human daily dose based on body surface area comparisons), there was a decrease in fetal viability. In rats, at 40 mg/kg/day (approximately equivalent to the recommended human daily dose based on body surface area comparisons), rifabutin caused an increase in fetal skeletal variations. In rabbits, at 80 mg/kg/day (about 5 times the recommended human daily dose based on body surface area comparisons), rifabutin caused maternal toxicity and increase in fetal skeletal anomalies.
Lactation
Risk Summary
Data from a published clinical lactation study reports that amoxicillin is present in human milk. Published adverse effects with amoxicillin exposure in the breast-fed infant include diarrhea. There are no data on the effects of amoxicillin on milk production. Limited data suggest omeprazole may be present in human milk. There are no clinical data on the effects of omeprazole on the breast-fed infant or on milk production. There are no data on the presence of rifabutin in human milk or the effects of rifabutin on the breast-fed infant or on milk production.
The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for TALICIA and any potential adverse effects on the breast-fed child from TALICIA or from the underlying condition.
Females and Males of Reproductive Potential
Contraception
Both rifabutin and amoxicillin components of TALICIA interact with hormonal contraceptives resulting in lower levels of these contraceptives. Therefore, female patients taking hormonal contraceptives should use an additional non-hormonal highly effective method of contraception while taking TALICIA [see Drug Interactions (7.1)].
Infertility
Males
Based on findings in rodents, TALICIA may impair fertility in males of reproductive potential [see Nonclinical Toxicology (13.1)].
Pediatric Use
Safety and effectiveness of TALICIA in pediatric patients below the age of 18 years with H. pylori infection have not been established.
Esomeprazole, an enantiomer of omeprazole, was shown to decrease body weight, body weight gain, femur weight, femur length, and overall growth in juvenile rats at oral doses about 11 to 23 times a daily human dose of 120 mg esomeprazole or omeprazole based on body surface area [see Nonclinical Toxicology (13.2)].
Geriatric Use
Clinical studies of TALICIA did not include sufficient numbers of subjects aged 65 and older to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger adult patients.
Omeprazole
Omeprazole was administered to over 2000 elderly individuals (≥ 65 years of age) in clinical trials in the U.S. and Europe. There were no differences in safety and effectiveness between the elderly and younger subjects. Other reported clinical experience has not identified differences in response between the elderly and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.
Amoxicillin
An analysis of clinical studies of amoxicillin was conducted to determine whether subjects aged 65 and older respond differently from younger subjects. These analyses have not identified differences in responses between the elderly and younger patients, but a greater sensitivity of some older individuals cannot be ruled out.
This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, it may be useful to monitor renal function in elderly patients taking TALICIA.
Rifabutin
Clinical studies of rifabutin did not include sufficient numbers of subjects aged 65 and older to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients.
Renal Impairment
It is recommended to avoid the use of TALICIA in patients with severe renal impairment (GFR < 30 mL/min). Amoxicillin is primarily eliminated by the kidney [see Clinical Pharmacology (12.3)].
Hepatic Impairment
It is recommended to avoid the use of TALICIA in patients with hepatic impairment. In patients with hepatic impairment (Child-Pugh Class A, B, or C) exposure to omeprazole substantially increased compared to healthy subjects [see Clinical Pharmacology (12.3)].
Hypersensitivity Reactions
TALICIA is contraindicated in patients with known hypersensitivity to the components of TALICIA: amoxicillin [or other β-lactam antibacterial drugs (e.g., penicillins and cephalosporins)], omeprazole (or other benzimidazoles [e.g. proton pump inhibitors (PPIs) and anthelmintics]), rifabutin (or any other rifamycins), or to any other component of TALICIA. Hypersensitivity reactions may include anaphylaxis or Stevens Johnson Syndrome, anaphylactic shock, angioedema, bronchospasm, acute tubulointerstitial nephritis, rash and urticaria [see Warnings and Precautions (5.1, 5.6, 5.8), Adverse Reactions (6.1)].
Rilpivirine-containing Products
Proton pump inhibitors (PPIs), including omeprazole (a component of TALICIA), are contraindicated in patients receiving rilpivirine-containing products [see Drug Interactions (7.1)].
Delavirdine
The use of rifabutin (a component of TALICIA), is contraindicated in patients receiving delavirdine [see Drug Interactions (7.1)].
Voriconazole
The use of rifabutin (a component of TALICIA), is contraindicated in patients receiving voriconazole [see Drug Interactions (7.1)].
Hypersensitivity Reactions
Serious and fatal hypersensitivity reactions, e.g., anaphylaxis, angioedema, erythema multiforme, exfoliative dermatitis, hypersensitivity vasculitis, acute tubulointerstitial nephritis, and serum sickness have been reported with the components of TALICIA: omeprazole, amoxicillin and rifabutin.
Signs and symptoms of these reactions may include hypotension, urticaria, angioedema, acute bronchospasm, conjunctivitis, thrombocytopenia, neutropenia or flu-like syndrome (weakness, fatigue, muscle pain, nausea, vomiting, headache, fever, chills, aches, rash, itching, sweats, dizziness, shortness of breath, chest pain, cough, syncope, palpitations).
There have been reports of individuals with a history of penicillin hypersensitivity who have experienced severe reactions when treated with cephalosporins.
Before initiating therapy with TALICIA, inquire about history of hypersensitivity reactions to penicillins, cephalosporins, rifamycins, or PPIs. Discontinue TALICIA and institute immediate therapy, if hypersensitivity reactions occur.
Severe Cutaneous Adverse Reactions
Severe cutaneous adverse reactions (SCAR), such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP) have been reported with the components of TALICIA: rifabutin, amoxicillin, and omeprazole [see Warnings and Precautions (5.1) and Adverse Reactions (6.3)].
Monitor closely and discontinue TALICIA at the first signs of SCAR.
Drug-Induced Enterocolitis Syndrome (DIES)
Drug-induced enterocolitis syndrome (DIES) has been reported with use of amoxicillin, a component of TALICIA [see Adverse Reactions (6.3)], with most cases occurring in pediatric patients ≤18 years of age. DIES is a non-IgE mediated hypersensitivity reaction characterized by protracted vomiting occurring 1 to 4 hours after drug ingestion in the absence of skin or respiratory symptoms. DIES may be associated with pallor, lethargy, hypotension, shock, diarrhea within 24 hours after ingesting amoxicillin, and leukocytosis with neutrophilia. If DIES occurs, discontinue TALICIA and institute appropriate therapy.
Clostridioides difficile-Associated Diarrhea
Clostridioides difficile-associated diarrhea (CDAD) has been reported with use of omeprazole, a component of TALICIA and nearly all antibacterial agents, including amoxicillin and rifabutin, which are components of TALICIA and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
CDAD must be considered in all patients who present with diarrhea following proton pump inhibitor and or antibacterial use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is confirmed, TALICIA should be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial drug treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Reduced Efficacy of Hormonal Contraceptives
TALICIA may reduce the efficacy of hormonal contraceptives. Therefore, an additional non-hormonal highly effective method of contraception should be used while taking TALICIA [see Drug Interactions (7.1)].
Acute Tubulointerstitial Nephritis
Acute tubulointerstitial nephritis (TIN) has been observed in patients taking PPIs including omeprazole, a component of TALICIA. TIN may occur at any point during PPI therapy.
Patients may present with varying signs and symptoms from symptomatic hypersensitivity reactions, to non-specific symptoms of decreased renal function (e.g., malaise, nausea, anorexia). In reported case series, some patients were diagnosed on biopsy and in the absence of extra-renal manifestations (e.g., fever, rash or arthralgia).
TIN has also been observed in patients taking penicillins, such as amoxicillin, a component of TALICIA.
Discontinue TALICIA and evaluate patients with suspected acute TIN [see Contraindications (4)].
Risk of Adverse Reactions or Loss of Efficacy Due to Drug Interactions
Components of TALICIA have the potential for clinically important drug interactions [see Contraindications (4) and Drug Interactions (7)].
Avoid concomitant use of TALICIA with other CYP2C19 or CYP3A4 inducers (e.g., St. John’s Wort, rifampin) as they can substantially decrease omeprazole concentrations. Avoid concomitant use of TALICIA with CYP2C19 and/or CYP3A4 inhibitors (e.g., fluconazole, itraconazole) as it may significantly increase the plasma concentration of component (s) of TALICIA. Depending on the protease inhibitor, the concomitant use of TALICIA should be avoided (e.g., amprenavir, indinavir) or dose adjustments for a concomitantly administered protease inhibitor(s) may be required. Concomitant use of PPIs with methotrexate (primarily at high dose) may elevate and prolong serum levels of methotrexate and/or its metabolite, possibly leading to methotrexate toxicities. Avoid TALICIA in patients on high-dose methotrexate. Concomitant use of clopidogrel and omeprazole reduces the pharmacological activity of clopidogrel. Avoid TALICIA in patients on clopidogrel. When using TALICIA, consider alternative anti-platelet therapy [see Drug Interactions (7)].
Cutaneous and Systemic Lupus Erythematosus
Cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE) have been reported in patients taking PPIs, including omeprazole. These events have occurred as both new onset and an exacerbation of existing autoimmune disease. The majority of PPI-induced lupus erythematosus cases were CLE. If signs or symptoms consistent with CLE or SLE develop in patients receiving TALICIA, discontinue the drug and evaluate as appropriate.
Rash in Patients with Mononucleosis
A high percentage of patients with mononucleosis who receive amoxicillin develop an erythematous skin rash. Avoid TALICIA in patients with mononucleosis.
Uveitis
Due to the possible occurrence of uveitis, patients should be carefully monitored when rifabutin, a component of TALICIA, is given in combination with clarithromycin (or other macrolides) and/or fluconazole and related compounds. If uveitis is suspected, refer for an ophthalmologic evaluation and, if considered necessary, suspend treatment with rifabutin [see Adverse Reactions (6.2)].
Interactions with Diagnostic Investigations for Neuroendocrine Tumors
Serum chromogranin A (CgA) levels increase secondary to drug-induced decreases in gastric acidity. The increased CgA level may cause false positive results in diagnostic investigations for neuroendocrine tumors. Assess CgA levels at least 14 days after TALICIA treatment and consider repeating the test if initial CgA levels are high [see Drug Interactions (7)].
Development of Drug-Resistant Bacteria
Prescribing TALICIA either in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.