Vibativ

(Telavancin Hydrochloride)
Check Drug InteractionsCheck known drug interactions.
Check Drug Interactions

Dosage & Administration

aCalculate using the Cockcroft-Gault formula and ideal body weight (IBW). Use actual body weight if < IBW. (

12.3 Pharmacokinetics

The mean pharmacokinetic parameters of telavancin (10 mg/kg) after a single and multiple 60-minute intravenous infusions (10 mg/kg every 24 hours) are summarized in Table 8.

Table 8: Pharmacokinetic Parameters of Telavancin in Healthy Adults, 10 mg/kg

Cmax= maximum plasma concentration; AUC = area under concentration-time course; t1/2= terminal elimination half-life; Cl = clearance; Vss= apparent volume of distribution at steady state; --1Data not available

Single Dose (n=42)
Multiple Dose (n=36)
Cmax(mcg/mL)93.6±14.2108 ± 26
AUC0-∞(mcg⋅hr/mL)747 ± 129--1
AUC0-24h(mcg⋅hr/mL)666 ± 107780 ± 125
t1/2(hr)8.0 ± 1.58.1 ± 1.5
Cl (mL/hr/kg)13.9 ± 2.913.1 ± 2.0
Vss(mL/kg)145 ± 23133 ± 24

In healthy young adults, the pharmacokinetics of telavancin administered intravenously were linear following single doses from 5 to 12.5 mg/kg and multiple doses from 7.5 to 15 mg/kg administered once daily for up to 7 days. Steadystate concentrations were achieved by the third daily dose.

Distribution

Telavancin binds to human plasma proteins, primarily to serum albumin, in a concentration-independent manner. The mean binding is approximately 90% and is not affected by renal or hepatic impairment.

Concentrations of telavancin in pulmonary epithelial lining fluid (ELF) and alveolar macrophages (AM) were measured through collection of bronchoalveolar lavage fluid at various times following administration of VIBATIV 10 mg/kg once daily for 3 days to healthy adults. Telavancin concentrations in ELF and AM exceeded the MIC90for

S. aureus
(0.5 mcg/mL) for at least 24 hours following dosing.

Concentrations of telavancin in skin blister fluid were 40% of those in plasma (AUC0-24hrratio) after 3 daily doses of 7.5 mg/kg VIBATIV in healthy young adults.

Metabolism

No metabolites of telavancin were detected in

in vitro
studies using human liver microsomes, liver slices, hepatocytes, and kidney S9 fraction. None of the following recombinant CYP 450 isoforms were shown to metabolize telavancin in human liver microsomes: CYP 1A2, 2C9, 2C19, 2D6, 3A4, 3A5, 4A11. The clearance of telavancin is not expected to be altered by inhibitors of any of these enzymes.

In a mass balance study in male subjects using radiolabeled telavancin, 3 hydroxylated metabolites were identified with the predominant metabolite (THRX-651540) accounting for <10% of the radioactivity in urine and <2% of the radioactivity in plasma. The metabolic pathway for telavancin has not been identified.

Excretion

Telavancin is primarily eliminated by the kidney. In a mass balance study, approximately 76% of the administered dose was recovered from urine and <1% of the dose was recovered from feces (collected up to 216 hours) based on total radioactivity.

Specific Populations

Geriatric Patients

The impact of age on the pharmacokinetics of telavancin was evaluated in healthy young (range 21-42 years) and elderly (range 65-83 years) subjects. The mean CrCl of elderly subjects was 66 mL/min. Age alone did not have a clinically meaningful impact on the pharmacokinetics of telavancin [

see Use in Specific Populations
].

Pediatric Patients

The pharmacokinetics of telavancin in patients less than 18 years of age have not been studied.

Gender

The impact of gender on the pharmacokinetics of telavancin was evaluated in healthy male (n=8) and female (n=8) subjects. The pharmacokinetics of telavancin were similar in males and females. No dosage adjustment is recommended based on gender.

Renal Impairment

The pharmacokinetics of telavancin were evaluated in subjects with normal renal function and subjects with varying degrees of renal impairment following administration of a single dose of telavancin 7.5 mg/kg (n=28). The mean AUC0-∞values were approximately 13%, 29%, and 118% higher for subjects with CrCl >50 to 80 mL/min, CrCl 30 to 50 mL/min, and CrCl <30 mL/min, respectively, compared with subjects with normal renal function. Dosage adjustment is required in patients with CrCl ≤50 mL/min [

see Dosage and Administration
].

Creatinine clearance was estimated from serum creatinine based on the Cockcroft-Gault formula:

CrCl =

[140 – age (years)] x ideal body weight (kg)*
{x 0.85 for female patients}

[72 x serum creatinine (mg/dL)]

*Use actual body weight if < ideal body weight (IBW)

IBW (male) = 50 kg + 0.9 kg/cm over 152 cm height

IBW (female) = 45.5 kg + 0.9 kg/cm over 152 cm height

Following administration of a single dose of VIBATIV 7.5 mg/kg to subjects with end-stage renal disease, approximately 5.9% of the administered dose of telavancin was recovered in the dialysate following 4 hours of hemodialysis. The effects of peritoneal dialysis have not been studied.

Following a single intravenous dose of VIBATIV 7.5 mg/kg, the clearance of hydroxypropyl-beta-cyclodextrin was reduced in subjects with renal impairment, resulting in a higher exposure to hydroxypropyl-beta-cyclodextrin. In subjects with mild, moderate, and severe renal impairment, the mean clearance values were 38%, 59%, and 82% lower, respectively, compared with subjects with normal renal function. Multiple infusions of VIBATIV may result in accumulation of hydroxypropyl-beta-cyclodextrin.

Hepatic Impairment

The pharmacokinetics of telavancin were not altered in subjects with moderate hepatic impairment (n= 8, Child-Pugh B) compared with healthy subjects with normal hepatic function matched for gender, age, and weight. The pharmacokinetics of telavancin have not been evaluated in patients with severe hepatic impairment (Child-Pugh C).

Drug
I
nteractions

In Vitro

The inhibitory activity of telavancin against the following CYP 450 enzymes was evaluated in human liver microsomes: CYP 1A2, 2C9, 2C19, 2D6, and 3A4/5. Telavancin inhibited CYP 3A4/5 at potentially clinically relevant concentrations. Upon further evaluation in a Phase 1 clinical trial, telavancin was found not to inhibit the metabolism of midazolam, a sensitive CYP3A substrate (see below).

Midazolam

The impact of telavancin on the pharmacokinetics of midazolam (CYP 3A4/5 substrate) was evaluated in 16 healthy adult subjects following administration of a single dose of VIBATIV 10 mg/kg, intravenous midazolam 1 mg, and both. The results showed that telavancin had no impact on the pharmacokinetics of midazolam and midazolam had no effect on the pharmacokinetics of telavancin.

Aztreonam

The impact of telavancin on the pharmacokinetics of aztreonam was evaluated in 11 healthy adult subjects following administration of a single dose of VIBATIV 10 mg/kg, aztreonam 2 g, and both. Telavancin had no impact on the pharmacokinetics of aztreonam and aztreonam had no effect on the pharmacokinetics of telavancin. No dosage adjustment of telavancin or aztreonam is recommended when both drugs are coadministered.

Piperacillin-tazobactam

The impact of telavancin on the pharmacokinetics of piperacillin-tazobactam was evaluated in 12 healthy adult subjects following administration of a single dose of VIBATIV 10 mg/kg, piperacillin-tazobactam 4.5 g, and both. Telavancin had no impact on the pharmacokinetics of piperacillin-tazobactam and piperacillin-tazobactam had no effect on the pharmacokinetics of telavancin. No dosage adjustment of telavancin or piperacillin-tazobactam is recommended when both drugs are coadministered.

)

Creatinine Clearance
a
(CrCl) (mL/min)
VIBATIV Dosage Regimen
>50 10 mg/kg every 24 hours
30-50 7.5 mg/kg every 24 hours
10-<30 10 mg/kg every 48 hours

Insufficient data are available to make a dosing recommendation for patients with CrCl <10 mL/min, including patients on hemodialysis.

PrescriberAI is currently offline. Try again later.

By using PrescriberAI, you agree to the AI Terms of Use.

This AI tool offers medical information for informational purposes only and is not a substitute for professional medical judgment or advice. Physicians and healthcare professionals should exercise their expertise and discretion when interpreting and applying the provided information to specific clinical situations.

Vibativ Prescribing Information

Vibativ Prior Authorization Resources

Most recent Vibativ prior authorization forms

Most recent state uniform prior authorization forms

Brand Resources

Vibativ PubMed™ News