By using PrescriberAI, you agree to the AI Terms of Use.
Xenazine Prescribing Information
4 CONTRAINDICATIONSXENAZINE is contraindicated in patients:
- Who are actively suicidal, or in patients with untreated or inadequately treated depression[see Warnings and Precautions (5.1)].
- With hepatic impairment[see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].
- Taking monoamine oxidase inhibitors (MAOIs). XENAZINE should not be used in combination with an MAOI, or within a minimum of 14 days of discontinuing therapy with an MAOI[see Drug Interactions (7.3)].
- Taking reserpine. At least 20 days should elapse after stopping reserpine before starting XENAZINE[see Drug Interactions ].
- Taking deutetrabenazine or valbenazine[see Drug Interactions ].
- Actively suicidal, or who have depression which is untreated or undertreated
- Hepatic impairment
- Taking monoamine oxidase inhibitors (MAOIs) or reserpine
- Taking deutetrabenazine or valbenazine
5.1 Depression and SuicidalityPatients with Huntington’s disease are at increased risk for depression, suicidal ideation or behaviors (suicidality). XENAZINE increases the risk for suicidality in patients with HD.
In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with Huntington’s disease, 10 of 54 patients (19%) treated with XENAZINE were reported to have an adverse event of depression or worsening depression compared to none of the 30 placebo-treated patients. In two open-label studies (in one study, 29 patients received XENAZINE for up to 48 weeks; in the second study, 75 patients received XENAZINE for up to 80 weeks), the rate of depression/worsening depression was 35%.
In all of the HD chorea studies of XENAZINE (n=187), one patient committed suicide, one attempted suicide, and six had suicidal ideation.
When considering the use of XENAZINE, the risk of suicidality should be balanced against the need for treatment of chorea. All patients treated with XENAZINE should be observed for new or worsening depression or suicidality. If depression or suicidality does not resolve, consider discontinuing treatment with XENAZINE.
Patients, their caregivers, and families should be informed of the risks of depression, worsening depression, and suicidality associated with XENAZINE, and should be instructed to report behaviors of concern promptly to the treating physician. Patients with HD who express suicidal ideation should be evaluated immediately.
XENAZINE is indicated for the treatment of chorea associated with Huntington’s disease.
XENAZINE tablets are available in the following strengths and packages:
The 12.5 mg XENAZINE tablets are white, cylindrical, biplanar tablets with beveled edges, non-scored, embossed on one side with “CL” and “12.5.”
The 25 mg XENAZINE tablets are yellowish-buff, cylindrical, biplanar tablets with beveled edges, scored, embossed on one side with “CL” and “25.”
XENAZINE is contraindicated in patients:
- Who are actively suicidal, or in patients with untreated or inadequately treated depression [see].
5.1 Depression and SuicidalityPatients with Huntington’s disease are at increased risk for depression, suicidal ideation or behaviors (suicidality). XENAZINE increases the risk for suicidality in patients with HD.
In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with Huntington’s disease, 10 of 54 patients (19%) treated with XENAZINE were reported to have an adverse event of depression or worsening depression compared to none of the 30 placebo-treated patients. In two open-label studies (in one study, 29 patients received XENAZINE for up to 48 weeks; in the second study, 75 patients received XENAZINE for up to 80 weeks), the rate of depression/worsening depression was 35%.
In all of the HD chorea studies of XENAZINE (n=187), one patient committed suicide, one attempted suicide, and six had suicidal ideation.
When considering the use of XENAZINE, the risk of suicidality should be balanced against the need for treatment of chorea. All patients treated with XENAZINE should be observed for new or worsening depression or suicidality. If depression or suicidality does not resolve, consider discontinuing treatment with XENAZINE.
Patients, their caregivers, and families should be informed of the risks of depression, worsening depression, and suicidality associated with XENAZINE, and should be instructed to report behaviors of concern promptly to the treating physician. Patients with HD who express suicidal ideation should be evaluated immediately.
- With hepatic impairment [see,
8.6 Hepatic ImpairmentBecause the safety and efficacy of the increased exposure to XENAZINE and other circulating metabolites are unknown, it is not possible to adjust the dosage of XENAZINE in hepatic impairment to ensure safe use. The use of XENAZINE in patients with hepatic impairment is contraindicated
[see Contraindications (4), Clinical Pharmacology (12.3)].].12.3 PharmacokineticsAbsorptionFollowing oral administration of tetrabenazine, the extent of absorption is at least 75%. After single oral doses ranging from 12.5 to 50 mg, plasma concentrations of tetrabenazine are generally below the limit of detection because of the rapid and extensive hepatic metabolism of tetrabenazine by carbonyl reductase to the active metabolites α-HTBZ and β-HTBZ. α-HTBZ and β-HTBZ are metabolized principally by CYP2D6. Peak plasma concentrations (Cmax) of α-HTBZ and β-HTBZ are reached within 1 to 1½ hours post-dosing. α-HTBZ is subsequently metabolized to a minor metabolite, 9-desmethyl-α-DHTBZ. β-HTBZ is subsequently metabolized to another major circulating metabolite, 9-desmethyl-β-DHTBZ, for which Cmaxis reached approximately 2 hours post-dosing.
Food EffectsThe effects of food on the bioavailability of XENAZINE were studied in subjects administered a single dose with and without food. Food had no effect on mean plasma concentrations, Cmax, or the area under the concentration time course (AUC) of α-HTBZ or β-HTBZ
[see Dosage and Administration (2.1)].DistributionResults of PET-scan studies in humans show that radioactivity is rapidly distributed to the brain following intravenous injection of11C-labeled tetrabenazine or α-HTBZ, with the highest binding in the striatum and lowest binding in the cortex.
The
in vitroprotein binding of tetrabenazine, α-HTBZ, and β-HTBZ was examined in human plasma for concentrations ranging from 50 to 200 ng/mL. Tetrabenazine binding ranged from 82% to 85%, α-HTBZ binding ranged from 60% to 68%, and β-HTBZ binding ranged from 59% to 63%.MetabolismAfter oral administration in humans, at least 19 metabolites of tetrabenazine have been identified. α-HTBZ, β-HTBZ and 9-desmethyl-β-DHTBZ are the major circulating metabolites and are subsequently metabolized to sulfate or glucuronide conjugates. α-HTBZ and β-HTBZ are formed by carbonyl reductase that occurs mainly in the liver. α-HTBZ is O-dealkylated by CYP450 enzymes, principally CYP2D6, with some contribution of CYP1A2 to form 9-desmethyl-α-DHTBZ, a minor metabolite. β-HTBZ is O-dealkylated principally by CYP2D6 to form 9-desmethyl-β-DHTBZ.
The results of
in vitrostudies do not suggest that tetrabenazine, α-HTBZ, β-HTBZ or 9-desmethyl-β-DHTBZ are likely to result in clinically significant inhibition of CYP2D6, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A.In vitrostudies suggest that neither tetrabenazine nor its α- or β-HTBZ or 9-desmethyl-β-DHTBZ metabolites are likely to result in clinically significant induction of CYP1A2, CYP3A4, CYP2B6, CYP2C8, CYP2C9, or CYP2C19.Neither tetrabenazine nor its α- or β-HTBZ or 9-desmethyl-β-DHTBZ metabolites are likely to be substrates or inhibitors of P-glycoprotein at clinically relevant concentrations
in vivo.EliminationAfter oral administration, tetrabenazine is extensively hepatically metabolized, and the metabolites are primarily renally eliminated. α-HTBZ, β-HTBZ and 9-desmethyl-β-DHTBZ have half-lives of 7 hours, 5 hours and 12 hours respectively. In a mass balance study in 6 healthy volunteers, approximately 75% of the dose was excreted in the urine, and fecal recovery accounted for approximately 7 to 16% of the dose. Unchanged tetrabenazine has not been found in human urine. Urinary excretion of α-HTBZ or β-HTBZ accounted for less than 10% of the administered dose. Circulating metabolites, including sulfate and glucuronide conjugates of HTBZ metabolites as well as products of oxidative metabolism, account for the majority of metabolites in the urine.
Specific PopulationsGenderThere is no apparent effect of gender on the pharmacokinetics of α-HTBZ or β-HTBZ.
Hepatic ImpairmentThe disposition of tetrabenazine was compared in 12 patients with mild to moderate chronic liver impairment (Child-Pugh scores of 5-9) and 12 age- and gender-matched subjects with normal hepatic function who received a single 25 mg dose of tetrabenazine. In patients with hepatic impairment, tetrabenazine plasma concentrations were similar to or higher than concentrations of α-HTBZ, reflecting the markedly decreased metabolism of tetrabenazine to α-HTBZ. The mean tetrabenazine Cmaxin subjects with hepatic impairment was approximately 7- to 190-fold higher than the detectable peak concentrations in healthy subjects. The elimination half-life of tetrabenazine in subjects with hepatic impairment was approximately 17.5 hours. The time to peak concentrations (tmax) of α-HTBZ and β-HTBZ was slightly delayed in subjects with hepatic impairment compared to age-matched controls (1.75 hrs vs. 1.0 hrs), and the elimination half-lives of the α-HTBZ and β-HTBZ were prolonged to approximately 10 and 8 hours, respectively. The exposure to α-HTBZ and β-HTBZ was approximately 30% to 39% greater in patients with liver impairment than in age-matched controls. The safety and efficacy of this increased exposure to tetrabenazine and other circulating metabolites are unknown so that it is not possible to adjust the dosage of tetrabenazine in hepatic impairment to ensure safe use. Therefore, XENAZINE is contraindicated in patients with hepatic impairment
[see Contraindications (4), Use in Specific Populations (8.6)].Poor CYP2D6 MetabolizersAlthough the pharmacokinetics of XENAZINE and its metabolites in patients who do not express the drug metabolizing enzyme, CYP2D6, poor metabolizers, (PMs), have not been systematically evaluated, it is likely that the exposure to α-HTBZ and β-HTBZ would be increased similar to that observed in patients taking strong CYP2D6 inhibitors (3- and 9-fold, respectively)
[see Dosage and Administration (2.3), Warnings and Precautions (5.3), Use in Specific Populations (8.7)].Drug InteractionsCYP2D6 InhibitorsIn vitrostudies indicate that α-HTBZ and β-HTBZ are substrates for CYP2D6. The effect of CYP2D6 inhibition on the pharmacokinetics of tetrabenazine and its metabolites was studied in 25 healthy subjects following a single 50 mg dose of tetrabenazine given after 10 days of administration of the strong CYP2D6 inhibitor paroxetine 20 mg daily. There was an approximately 30% increase in Cmaxand an approximately 3-fold increase in AUC for α-HTBZ in subjects given paroxetine prior to tetrabenazine compared to tetrabenazine given alone. For β-HTBZ, the Cmaxand AUC were increased 2.4- and 9-fold, respectively, in subjects given paroxetine prior to tetrabenazine given alone. The elimination half-life of α-HTBZ and β-HTBZ was approximately 14 hours when tetrabenazine was given with paroxetine.Strong CYP2D6 inhibitors (e.g., paroxetine, fluoxetine, quinidine) markedly increase exposure to these metabolites. The effect of moderate or weak CYP2D6 inhibitors such as duloxetine, terbinafine, amiodarone, or sertraline on the exposure to XENAZINE and its metabolites has not been evaluated
[see Dosage and Administration (2.3), Warnings and Precautions (5.3), Drug Interactions (7.1), Use in Specific Populations (8.7)].DigoxinDigoxin is a substrate for P-glycoprotein. A study in healthy volunteers showed that XENAZINE (25 mg twice daily for 3 days) did not affect the bioavailability of digoxin, suggesting that at this dose, XENAZINE does not affect P-glycoprotein in the intestinal tract.
In vitrostudies also do not suggest that XENAZINE or its metabolites are P-glycoprotein inhibitors. - Taking monoamine oxidase inhibitors (MAOIs). XENAZINE should not be used in combination with an MAOI, or within a minimum of 14 days of discontinuing therapy with an MAOI [see].
7.3 Monoamine Oxidase Inhibitors (MAOIs)XENAZINE is contraindicated in patients taking MAOIs. XENAZINE should not be used in combination with an MAOI, or within a minimum of 14 days of discontinuing therapy with an MAOI
[see Contraindications (4)]. - Taking reserpine. At least 20 days should elapse after stopping reserpine before starting XENAZINE [see Drug Interactions ()].
7.2 ReserpineReserpine binds irreversibly to VMAT2, and the duration of its effect is several days. Prescribers should wait for chorea to re-emerge before administering XENAZINE to avoid overdosage and major depletion of serotonin and norepinephrine in the CNS. At least 20 days should elapse after stopping reserpine before starting XENAZINE. XENAZINE and reserpine should not be used concomitantly
[see Contraindications (4)]. - Taking deutetrabenazine or valbenazine [see Drug Interactions ()].
7.7 Concomitant Deutetrabenazine or ValbenazineXENAZINE is contraindicated in patients currently taking deutetrabenazine or valbenazine.
The following serious adverse reactions are described below and elsewhere in the labeling:
- Depression and Suicidality [see]
5.1 Depression and SuicidalityPatients with Huntington’s disease are at increased risk for depression, suicidal ideation or behaviors (suicidality). XENAZINE increases the risk for suicidality in patients with HD.
In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with Huntington’s disease, 10 of 54 patients (19%) treated with XENAZINE were reported to have an adverse event of depression or worsening depression compared to none of the 30 placebo-treated patients. In two open-label studies (in one study, 29 patients received XENAZINE for up to 48 weeks; in the second study, 75 patients received XENAZINE for up to 80 weeks), the rate of depression/worsening depression was 35%.
In all of the HD chorea studies of XENAZINE (n=187), one patient committed suicide, one attempted suicide, and six had suicidal ideation.
When considering the use of XENAZINE, the risk of suicidality should be balanced against the need for treatment of chorea. All patients treated with XENAZINE should be observed for new or worsening depression or suicidality. If depression or suicidality does not resolve, consider discontinuing treatment with XENAZINE.
Patients, their caregivers, and families should be informed of the risks of depression, worsening depression, and suicidality associated with XENAZINE, and should be instructed to report behaviors of concern promptly to the treating physician. Patients with HD who express suicidal ideation should be evaluated immediately.
- Neuroleptic Malignant Syndrome (NMS) [see]
5.4 Neuroleptic Malignant Syndrome (NMS)A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with XENAZINE and other drugs that reduce dopaminergic transmission
[see Drug Interactions (7.6)].Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatinine phosphokinase, myoglobinuria, rhabdomyolysis, and acute renal failure. The diagnosis of NMS can be complicated; other serious medical illness (e.g., pneumonia, systemic infection), and untreated or inadequately treated extrapyramidal disorders can present with similar signs and symptoms. Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology.The management of NMS should include (1) immediate discontinuation of XENAZINE; (2) intensive symptomatic treatment and medical monitoring; and (3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS.
Recurrence of NMS has been reported with resumption of drug therapy. If treatment with XENAZINE is needed after recovery from NMS, patients should be monitored for signs of recurrence.
- Akathisia, Restlessness, and Agitation [see]
5.5 Akathisia, Restlessness, and AgitationXENAZINE may increase the risk of akathisia, restlessness, and agitation.
In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with HD, akathisia was observed in 10 (19%) of XENAZINE-treated patients and 0% of placebo-treated patients. In an 80-week, open-label study, akathisia was observed in 20% of XENAZINE-treated patients.
Patients receiving XENAZINE should be monitored for the presence of akathisia. Patients receiving XENAZINE should also be monitored for signs and symptoms of restlessness and agitation, as these may be indicators of developing akathisia. If a patient develops akathisia, the XENAZINE dose should be reduced; however, some patients may require discontinuation of therapy.
- Parkinsonism [see]
5.6 ParkinsonismXENAZINE can cause parkinsonism. In a 12-week, double-blind, placebo-controlled study in patients with chorea associated with HD, symptoms suggestive of parkinsonism (i.e., bradykinesia, hypertonia and rigidity) were observed in 15% of XENAZINE-treated patients compared to 0% of placebo-treated patients. In 48-week and 80-week, open-label studies, symptoms suggestive of parkinsonism were observed in 10% and 3% of XENAZINE-treated patients, respectively.
Because rigidity can develop as part of the underlying disease process in Huntington’s disease, it may be difficult to distinguish between this drug-induced adverse reaction and progression of the underlying disease process. Drug-induced parkinsonism has the potential to cause more functional disability than untreated chorea for some patients with Huntington’s disease. If a patient develops parkinsonism during treatment with XENAZINE, dose reduction should be considered; in some patients, discontinuation of therapy may be necessary.
- Sedation and Somnolence [see]
5.7 Sedation and SomnolenceSedation is the most common dose-limiting adverse reaction of XENAZINE. In a 12-week, double-blind, placebo-controlled trial in patients with chorea associated with HD, sedation/somnolence occurred in 17/54 (31%) of XENAZINE-treated patients and in 1 (3%) of placebo-treated patient. Sedation was the reason upward titration of XENAZINE was stopped and/or the dose of XENAZINE was decreased in 15/54 (28%) patients. In all but one case, decreasing the dose of XENAZINE resulted in decreased sedation. In 48-week and 80-week, open-label studies, sedation/somnolence occurred in 17% and 57% of XENAZINE-treated patients, respectively. In some patients, sedation occurred at doses that were lower than recommended doses.
Patients should not perform activities requiring mental alertness to maintain the safety of themselves or others, such as operating a motor vehicle or operating hazardous machinery, until they are on a maintenance dose of XENAZINE and know how the drug affects them.
- QTc Prolongation [see]
5.8 QTc ProlongationXENAZINE causes a small increase (about 8 msec) in the corrected QT (QTc) interval. QT prolongation can lead to development of torsade de pointes-type ventricular tachycardia with the risk increasing as the degree of prolongation increases
[see Clinical Pharmacology (12.2)].The use of XENAZINE should be avoided in combination with other drugs that are known to prolong QTc, including antipsychotic medications (e.g., chlorpromazine, haloperidol, thioridazine, ziprasidone), antibiotics (e.g., moxifloxacin), Class 1A (e.g., quinidine, procainamide) and Class III (e.g., amiodarone, sotalol) antiarrhythmic medications or any other medications known to prolong the QTc interval[see Drug Interactions (7.5)].XENAZINE should also be avoided in patients with congenital long QT syndrome and in patients with a history of cardiac arrhythmias. Certain circumstances may increase the risk of the occurrence of torsade de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including (1) bradycardia; (2) hypokalemia or hypomagnesemia; (3) concomitant use of other drugs that prolong the QTc interval; and (4) presence of congenital prolongation of the QT interval
[see Clinical Pharmacology (12.2)]. - Hypotension and Orthostatic Hypotension [see]
5.9 Hypotension and Orthostatic HypotensionXENAZINE induced postural dizziness in healthy volunteers receiving single doses of 25 or 50 mg. One subject had syncope, and one subject with postural dizziness had documented orthostasis. Dizziness occurred in 4% of XENAZINE-treated patients (vs. none on placebo) in the 12-week, controlled trial; however, blood pressure was not measured during these events. Monitoring of vital signs on standing should be considered in patients who are vulnerable to hypotension.
- Hyperprolactinemia [see]
5.10 HyperprolactinemiaXENAZINE elevates serum prolactin concentrations in humans. Following administration of 25 mg to healthy volunteers, peak plasma prolactin levels increased 4- to 5-fold. Tissue culture experiments indicate that approximately one third of human breast cancers are prolactin-dependent
in vitro, a factor of potential importance if XENAZINE is being considered for a patient with previously detected breast cancer. Although amenorrhea, galactorrhea, gynecomastia, and impotence can be caused by elevated serum prolactin concentrations, the clinical significance of elevated serum prolactin concentrations for most patients is unknown. Chronic increase in serum prolactin levels (although not evaluated in the XENAZINE development program) has been associated with low levels of estrogen and increased risk of osteoporosis. If there is a clinical suspicion of symptomatic hyperprolactinemia, appropriate laboratory testing should be done and consideration should be given to discontinuation of XENAZINE. - Binding to Melanin-Containing Tissues [see]
5.11 Binding to Melanin-Containing TissuesSince XENAZINE or its metabolites bind to melanin-containing tissues, it could accumulate in these tissues over time. This raises the possibility that XENAZINE may cause toxicity in these tissues after extended use. Neither ophthalmologic nor microscopic examination of the eye has been conducted in the chronic toxicity studies in a pigmented species, such as dogs. Ophthalmologic monitoring in humans was inadequate to exclude the possibility of injury occurring after long-term exposure.
The clinical relevance of XENAZINE’s binding to melanin-containing tissues is unknown. Although there are no specific recommendations for periodic ophthalmologic monitoring, prescribers should be aware of the possibility of long-term ophthalmologic effects
[see Clinical Pharmacology (12.2)].
XENAZINE (tetrabenazine) is a monoamine depletor for oral administration. The molecular weight of tetrabenazine is 317.43; the pKa is 6.51. Tetrabenazine is a hexahydro-dimethoxy-benzoquinolizine derivative and has the following chemical name: cis rac –1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-3-(2-methylpropyl)-2H-benzo[a]quinolizin-2-one.
The empirical formula C19H27NO3 is represented by the following structural formula:
Tetrabenazine is a white to slightly yellow crystalline powder that is sparingly soluble in water and soluble in ethanol.
Each XENAZINE (tetrabenazine) tablet contains either 12.5 or 25 mg of tetrabenazine as the active ingredient.
XENAZINE (tetrabenazine) tablets contain tetrabenazine as the active ingredient and the following inactive ingredients: lactose, magnesium stearate, maize starch, and talc. The 25 mg strength tablet also contains yellow iron oxide as an inactive ingredient.
XENAZINE (tetrabenazine) tablets are supplied as a yellowish-buff, scored tablet containing 25 mg of tetrabenazine or as a white, non-scored tablet containing 12.5 mg of tetrabenazine.