Xerava
(eravacycline)Dosage & Administration
By using PrescriberAI, you agree to the AI Terms of Use.
Xerava Prescribing Information
Complicated Intra-abdominal Infections
XERAVA is indicated for the treatment of complicated intra‑abdominal infections (cIAI) caused by susceptible microorganisms: Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, Enterobacter cloacae, Klebsiella oxytoca, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Streptococcus anginosus group, Clostridium perfringens, Bacteroides species, and Parabacteroides distasonis in patients 18 years or older [see Microbiology and Clinical Studies ].
Limitations of Use
XERAVA is not indicated for the treatment of complicated urinary tract infections (cUTI) [see Clinical Studies ].
Usage
To reduce the development of drug-resistant bacteria and maintain the effectiveness of XERAVA and other antibacterial drugs, XERAVA should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Recommended Adult Dosage
The recommended dose regimen of XERAVA is 1 mg/kg every 12 hours. Administer intravenous infusions of XERAVA over approximately 60 minutes every 12 hours.
The recommended duration of treatment with XERAVA for cIAI is 4 to 14 days. The duration of therapy should be guided by the severity and location of infection and the patient's clinical response.
Dosage Modifications in Patients with Hepatic Impairment
In patients with severe hepatic impairment (Child Pugh C), administer XERAVA 1 mg/kg every 12 hours on Day 1 followed by XERAVA 1 mg/kg every 24 hours starting on Day 2 for a total duration of 4 to 14 days. No dosage adjustment is warranted in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B) [see Use in Specific Populations and Clinical Pharmacology ].
Dosage Modifications in Patients with Concomitant Use of a Strong Cytochrome P450 (CYP) Isoenzyme 3A Inducer
With concomitant use of a strong CYP3A inducer, administer XERAVA 1.5 mg/kg every 12 hours for a total duration of 4 to 14 days. No dosage adjustment is warranted in patients with concomitant use of a weak or moderate CYP3A inducer [see Drug Interactions and Clinical Pharmacology ].
Preparation and Administration
XERAVA is for intravenous infusion only. Each vial is for a single dose only.
Preparation
XERAVA is supplied as a sterile yellow to orange dry powder in a single-dose vial that must be reconstituted and further diluted prior to intravenous infusion as outlined below. XERAVA does not contain preservatives. Aseptic technique must be used for reconstitution and dilution as follows:
- Calculate the dose of XERAVA based on the patient weight (1 mg/kg actual body weight). Prepare the required dose for intravenous infusion by reconstituting the appropriate number of vials needed. Reconstitute each vial of XERAVA with 5 mL of Sterile Water for Injection, USP or with 5 mL of 0.9% Sodium Chloride Injection, USP, which will deliver the following:
- XERAVA 50 mg vial will deliver 50 mg (10 mg/mL) of eravacycline (free base equivalents).
- XERAVA 100 mg vial will deliver 100 mg (20 mg/mL) of eravacycline (free base equivalents).
- Swirl the vial gently until the powder has dissolved entirely. Avoid shaking or rapid movement as it may cause foaming. The reconstituted XERAVA solution should be a clear, pale yellow to orange solution. Do not use the solution if you notice any particles or the solution is cloudy. Reconstituted solution is not for direct injection. The stability of the solution after reconstitution in the vial has been demonstrated for 1 hour at room temperature (not to exceed 25°C/77°F). If the reconstituted solution in the vial is not diluted in the infusion bag within 1 hour, the reconstituted vial content must be discarded.
- The reconstituted XERAVA solution is further diluted for intravenous infusion to a target concentration of 0.3 mg/mL, in a 0.9% Sodium Chloride Injection, USP infusion bag before intravenous infusion. To dilute the reconstituted solution, withdraw the full or partial reconstituted vial content from each vial and add it into the infusion bag to generate an infusion solution with a target concentration of 0.3 mg/mL (within a range of 0.2 to 0.6 mg/mL). Do not shake the bag.
- The diluted solutions must be infused within 12 hours if stored at room temperature (not to exceed 25°C/77°F) or within 8 days if stored refrigerated at 2°C to 8°C (36°F to 46°F). Reconstituted XERAVA solutions and diluted XERAVA infusion solutions should not be frozen.
- Visually inspect the diluted XERAVA solution for particulate matter and discoloration prior to administration (the XERAVA infusion solution for administration is clear and ranges from light yellow to orange). Discard unused portions of the reconstituted and diluted solution.
Administration of the Intravenous Infusion
The diluted XERAVA solution is administered as an intravenous infusion over approximately 60 minutes.
XERAVA may be administered intravenously through a dedicated line or through a Y-site. If the same intravenous line is used for sequential infusion of several drugs, the line should be flushed before and after infusion of XERAVA with 0.9% Sodium Chloride Injection, USP.
Drug Compatibilities
XERAVA is compatible with 0.9% Sodium Chloride Injection, USP. The compatibility of XERAVA with other drugs and infusion solutions has not been established. XERAVA should not be mixed with other drugs or added to solutions containing other drugs.
XERAVA for injection is a yellow to orange, sterile, preservative-free, lyophilized powder in single-dose vials for reconstitution and further dilution. XERAVA is available in two strengths:
- 50 mg of eravacycline (equivalent to 63.5 mg eravacycline dihydrochloride)
- 100 mg of eravacycline (equivalent to 127 mg eravacycline dihydrochloride)
Pregnancy
Risk Summary
XERAVA, like other tetracycline-class antibacterial drugs, may cause discoloration of deciduous teeth and reversible inhibition of bone growth when administered during the second and third trimester of pregnancy [see Warnings and Precautions , Use in Specific Populations ]. The limited available data with XERAVA use in pregnant women are insufficient to inform drug‑associated risk of major birth defects and miscarriages. Animal studies indicate that eravacycline crosses the placenta and is found in fetal plasma; doses greater than approximately 3- and 2.8- times the clinical exposure, based on AUC in rats and rabbits, respectively, administered during the period of organogenesis, were associated with decreased ossification, decreased fetal body weight, and/or increased post-implantation loss (see Data).
The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.
Data
Animal Data
Embryo-fetal development studies in rats and rabbits reported no treatment-related effects at approximately 3 and 2.8 times the clinical exposure (based on AUC). Dosing was during the period of organogenesis, i.e., gestation days 7-17 in rats and gestation days 7-19 in rabbits. Higher doses, approximately 8.6 and 6.3 times the clinical exposure (based on AUC) in rats and rabbits, respectively, were associated with fetal effects including increased post-implantation loss, reduced fetal body weights, and delays in skeletal ossification in both species, and abortion in the rabbit.
A peri-natal and post-natal rat toxicity study demonstrated that eravacycline crosses the placenta and is found in fetal plasma following intravenous administration to the dams. This study did not demonstrate anatomical malformations, but there were early decreases in pup weight that were later comparable to controls and a non-significant trend toward increased stillbirths or dead pups during lactation. F1 males from dams treated with 10 mg/kg/day eravacycline that continued to fertility testing had decreased testis and epididymis weights at approximately post-natal day 111 that may have been at least partially related to lower body weights in this group.
Tetracyclines cross the placenta, are found in fetal tissues, and can have toxic effects on the developing fetus (often related to retardation of skeletal development). Evidence of embryotoxicity also has been noted in animals treated early in pregnancy.
Lactation
Risk Summary
It is not known whether XERAVA is excreted in human breast milk. Eravacycline (and its metabolites) is excreted in the milk of lactating rats (see Data). Tetracyclines are excreted in human milk; however, the extent of absorption of tetracyclines, including eravacycline, by the breastfed infant is not known. There are no data on the effects of XERAVA on the breastfed infant, or the effects on milk production. Because there are other antibacterial drug options available to treat cIAI in lactating women and because of the potential for serious adverse reactions, including tooth discoloration and inhibition of bone growth, advise patients that breastfeeding is not recommended during treatment with XERAVA and for 4 days (based on half-life) after the last dose.
Data
Animal Data
Eravacycline (and its metabolites) was excreted in the milk of lactating rats on post-natal day 15 following intravenous administration of 3, 5, and 10 mg/kg/day eravacycline.
Females and Males of Reproductive Potential
Infertility
Based on animal studies, XERAVA can lead to impaired spermiation and sperm maturation, resulting in abnormal sperm morphology and poor motility. The effect is reversible in rats. The long-term effects of XERAVA on male fertility have not been studied [see Nonclinical Toxicology ].
Pediatric Use
The safety and effectiveness of XERAVA in pediatric patients have not been established.
Due to the adverse effects of the tetracycline-class of drugs, including XERAVA on tooth development and bone growth, use of XERAVA in pediatric patients less than 8 years of age is not recommended [see Warnings and Precautions ].
Geriatric Use
Of the total number of patients with cIAI who received XERAVA in Phase 3 clinical trials (n = 520), 158 subjects were ≥ 65 years of age, while 59 subjects were ≥ 75 years of age. No overall differences in safety or efficacy were observed between these subjects and younger subjects.
No clinically relevant differences in the pharmacokinetics of eravacycline were observed with respect to age in a population pharmacokinetic analysis of eravacycline [see Clinical Pharmacology ].
Hepatic Impairment
No dosage adjustment is warranted for XERAVA in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B). Adjust XERAVA dosage in patients with severe hepatic impairment (Child Pugh C) [see Dosage and Administration and Clinical Pharmacology ].
Renal Impairment
No dosage adjustment is necessary for XERAVA in patients with renal impairment [see Clinical Pharmacology ].
XERAVA is contraindicated for use in patients with known hypersensitivity to eravacycline, tetracycline-class antibacterial drugs, or to any of the excipients [see Warnings and Precautions and Adverse Reactions ].
Hypersensitivity Reactions
Life-threatening hypersensitivity (anaphylactic) reactions have been reported with XERAVA [see Adverse Reactions ]. XERAVA is structurally similar to other tetracycline-class antibacterial drugs and should be avoided in patients with known hypersensitivity to tetracycline- class antibacterial drugs. Discontinue XERAVA if an allergic reaction occurs.
Tooth Discoloration and Enamel Hypoplasia
The use of XERAVA during tooth development (last half of pregnancy, infancy and childhood to the age of 8 years) may cause permanent discoloration of the teeth (yellow-grey-brown). This adverse reaction is more common during long-term use of the tetracycline class drugs, but it has been observed following repeated short-term courses. Enamel hypoplasia has also been reported with tetracycline class drugs. Advise the patient of the potential risk to the fetus if XERAVA is used during the second or third trimester of pregnancy [see Use in Specific Populations ].
Inhibition of Bone Growth
The use of XERAVA during the second and third trimester of pregnancy, infancy and childhood up to the age of 8 years may cause reversible inhibition of bone growth. All tetracyclines form a stable calcium complex in any bone-forming tissue. A decrease in fibula growth rate has been observed in premature infants given oral tetracycline in doses of 25 mg/kg every 6 hours. This reaction was shown to be reversible when the drug was discontinued. Advise the patient of the potential risk to the fetus if XERAVA is used during the second or third trimester of pregnancy [see Use in Specific Populations ].
Clostridioides difficile-Associated Diarrhea
Clostridioides difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial drug use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is suspected or confirmed, ongoing antibacterial drug use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial drug treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Tetracycline Class Adverse Reactions
XERAVA is structurally similar to tetracycline-class antibacterial drugs and may have similar adverse reactions. Adverse reactions including photosensitivity, fixed drug eruption, pseudotumor cerebri, and anti‑ anabolic action which has led to increased BUN, azotemia, acidosis, hyperphosphatemia, pancreatitis, and abnormal liver function tests, have been reported for other tetracycline-class antibacterial drugs, and may occur with XERAVA. Discontinue XERAVA if any of these adverse reactions is suspected.
Potential for Microbial Overgrowth
XERAVA use may result in overgrowth of non-susceptible organisms, including fungi. If such infections occur, discontinue XERAVA and institute appropriate therapy.
Development of Drug-Resistant Bacteria
Prescribing XERAVA in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria [see Indications and Usage ].