Dosage & Administration
By using PrescriberAI, you agree to the AI Terms of Use.
Zipsor Prescribing Information
Cardiovascular Thrombotic Events
- Nonsteroidal anti-inflammatory drugs (NSAIDs) cause an increased risk of serious cardiovascular thrombotic events, including myocardial infarction and stroke, which can be fatal. This risk may occur early in treatment and may increase with duration of use [see Warnings and Precautions ].
- ZIPSOR is contraindicated in the setting of coronary artery bypass graft (CABG) surgery [see Contraindications and Warnings and Precautions ].
Gastrointestinal Bleeding, Ulceration, and Perforation
- NSAIDs cause an increased risk of serious gastrointestinal (GI) adverse events including bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients and patients with a prior history of peptic ulcer disease and/or GI bleeding are at greater risk for serious GI events [see Warnings and Precautions ( 5.2)].
ZIPSOR is indicated for relief of mild to moderate acute pain in adult and pediatric patients 12 years of age and older.
General Dosing Instructions
Carefully consider the potential benefits and risks of ZIPSOR and other treatment options before deciding to use ZIPSOR. Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals [see Warnings and Precautions ].
For treatment of mild to moderate acute pain in adult and pediatric patients 12 years of age and older, the dosage is 25 mg four times a day.
Dosage Adjustments in Patients with Hepatic Impairment
Patients with hepatic disease may require reduced doses of ZIPSOR compared to patients with normal hepatic function [see Clinical Pharmacology ]. As with other diclofenac products, start treatment at the lowest dose. If efficacy is not achieved with the lowest dose, discontinue use.
Non-Interchangeability with Other Formulations of Diclofenac
Different dose strengths and formulations of oral diclofenac are not interchangeable. This difference should be taken into consideration when changing strengths or formulations. The only approved dosing regimen for ZIPSOR is 25 mg four times a day.
ZIPSOR (diclofenac potassium) capsule: 25 mg
Pregnancy
Risk Summary
Use of NSAIDs, including ZIPSOR, can cause premature closure of the fetal ductus arteriosus and fetal renal dysfunction leading to oligohydramnios and, in some cases, neonatal renal impairment. Because of these risks, limit dose and duration of ZIPSOR use between about 20 and 30 weeks of gestation, and avoid ZIPSOR use at about 30 weeks of gestation and later in pregnancy (see Clinical Considerations, Data).
Premature Closure of Fetal Ductus Arteriosus
Use of NSAIDs, including ZIPSOR, at about 30 weeks gestation or later in pregnancy increases the
risk of premature closure of the fetal ductus arteriosus.
Oligohydramnios/Neonatal Renal Impairment
Use of NSAIDs at about 20 weeks gestation or later in pregnancy has been associated with cases of
fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment.
Data from observational studies regarding other potential embryofetal risks of NSAID use in women in the first or second trimesters of pregnancy are inconclusive.
In animal reproduction studies, no evidence of malformations was observed in mice, rats, and rabbits given diclofenac during the period of organogenesis at doses up to approximately 1, 1, and 2 times, respectively, the maximum recommended human dose (MRHD) of ZIPSOR, despite the presence of maternal and fetal toxicity at these doses. In published studies, administration of clinically relevant doses of diclofenac to pregnant rats produced adverse effects on brain, kidney, and testicular development [see Data]. Based on animal data, prostaglandins have been shown to have an important role in endometrial vascular permeability, blastocyst implantation, and decidualization. In animal studies, administration of prostaglandin synthesis inhibitors such as diclofenac, resulted in increased pre- and post-implantation loss. Prostaglandins also have been shown to have an important role in fetal kidney development. In published animal studies, prostaglandin synthesis inhibitors have been reported to impair kidney development when administered at clinically relevant doses.
The estimated background risk of major birth defects and miscarriage for the indicated population(s) is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.
Clinical Considerations
Fetal/Neonatal Adverse Reactions
Premature Closure of Fetal Ductus Arteriosus:
Avoid use of NSAIDs in women at about 30 weeks gestation and later in pregnancy, because NSAIDs, including ZIPSOR, can cause premature closure of the fetal ductus arteriosus (see Data).
Oligohydramnios/Neonatal Renal Impairment:
If an NSAID is necessary at about 20 weeks gestation or later in pregnancy, limit the use to the lowest dose and shortest duration possible. If ZIPSOR treatment extends beyond 48 hours, consider monitoring with ultrasound for oligohydramnios. If oligohydramnios occurs, discontinue ZIPSOR and follow up according to clinical practice (see Data).
Labor or Delivery
There are no studies on the effects of ZIPSOR during labor or delivery. In animal studies, NSAIDS, including diclofenac, inhibit prostaglandin synthesis, cause delayed parturition, and increase the incidence of stillbirth.
Data
Human Data
Premature Closure of Fetal Ductus Arteriosus:
Published literature reports that the use of NSAIDs at about 30 weeks of gestation and later in pregnancy may cause premature closure of the fetal ductus arteriosus.
Oligohydramnios/Neonatal Renal Impairment:
Published studies and postmarketing reports describe maternal NSAID use at about 20 weeks gestation or later in pregnancy associated with fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. In many cases, but not all, the decrease in amniotic fluid was transient and reversible with cessation of the drug. There have been a limited number of case reports of maternal NSAID use and neonatal renal dysfunction without oligohydramnios, some of which were irreversible. Some cases of neonatal renal dysfunction required treatment with invasive procedures, such as exchange transfusion or dialysis.
Methodological limitations of these postmarketing studies and reports include lack of a control group; limited information regarding dose, duration, and timing of drug exposure; and concomitant use of other medications. These limitations preclude establishing a reliable estimate of the risk of adverse fetal and neonatal outcomes with maternal NSAID use. Because the published safety data on neonatal outcomes involved mostly preterm infants, the generalizability of certain reported risks to the full-term infant exposed to NSAIDs through maternal use is uncertain.
Diclofenac has been shown to cross the placental barrier in humans.
Animal data
Reproductive and developmental studies in animals demonstrated that diclofenac sodium administration during organogenesis did not produce malformations despite the induction of maternal toxicity and fetal toxicity in mice at oral doses up to 20 mg/kg/day (approximately equivalent to the maximum recommended human dose [MRHD] of ZIPSOR, 100 mg/day, based on body surface area (BSA) comparison), and in rats and rabbits at oral doses up to 10 mg/kg/day (approximately 1 and 2 times, respectively, the MRHD based on BSA comparison).
In a study in which pregnant rats were orally administered 2 or 4 mg/kg diclofenac (0.2 and 0.4 times the MRHD based on BSA comparison) from Gestation Day 15 through Lactation Day 21, significant maternal toxicity (peritonitis, mortality) was noted. These maternally toxic doses were associated with dystocia, prolonged gestation, reduced fetal weights and growth, and reduced fetal survival. Diclofenac has been shown to cross the placental barrier in mice and rats.
In published studies, diclofenac administration to pregnant rats prolonged gestation and produced liver toxicity and neuronal loss in offspring (1 mg/kg, IP; 0.1 times the MRHD based on BSA comparison), impaired nephrogenesis in the kidney (3.6 mg/kg, IP; 0.3 times the MRHD based on BSA comparison), and caused adverse effects on the developing testes (6.1 mg/kg, PO; 0.6 times the MRHD based on BSA comparison).
Lactation
Risk Summary
Data from published literature reports with oral preparations of diclofenac indicate the presence of diclofenac in small amounts human milk (see Data). There are no data on the effects on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for ZIPSOR and any potential adverse effects on the breastfed infant from the ZIPSOR or from the underlying maternal condition.
Data
One woman treated orally with a diclofenac salt, 150 mg/day, had a milk diclofenac level of 100 mcg/L, equivalent to an infant dose of about 0.03 mg/kg/day. Diclofenac was not detectable in breast milk in 12 women using diclofenac (after either 100 mg/day orally for 7 days or a single 50 mg intramuscular dose administered in the immediate postpartum period).
Females and Males of Reproductive Potential
Infertility
Females
Based on the mechanism of action, the use of prostaglandin-mediated NSAIDs, including ZIPSOR, may delay or prevent rupture of ovarian follicles, which has been associated with reversible infertility in some women [see Clinical Pharmacology ]. Published animal studies have shown that administration of prostaglandin synthesis inhibitors has the potential to disrupt prostaglandin- mediated follicular rupture required for ovulation. Small studies in women treated with NSAIDs have also shown a reversible delay in ovulation. Consider withdrawal of NSAIDs, including ZIPSOR, in women who have difficulties conceiving or who are undergoing investigation of infertility.
Males
Published studies in adult male rodents report that diclofenac, at clinically relevant doses, can produce adverse effects on male reproductive tissues. The impact of these findings on male fertility is not clear [See Nonclinical Toxicology ].
Pediatric Use
The safety and effectiveness of ZIPSOR in pediatric patients 12 years to 17 years of age have been established. Use of ZIPSOR in this age group is based on extrapolation of efficacy from adequate and well-controlled studies in adults and supported by pharmacokinetic and safety data from two open-label studies in 49 patients 12 years to 17 years of age with mild to moderate acute pain and one active-controlled study in 76 pediatric patients 12 years to 16 years of age with orthodontic discomfort. Based on the available data, the plasma diclofenac concentration in adolescent patients was comparable to that observed in healthy adults. The safety profile of ZIPSOR in adolescent patients was similar to adults.
The safety and effectiveness of ZIPSOR in patients less than 12 years of age have not been established.
Geriatric Use
Elderly patients, compared to younger patients, are at greater risk for NSAID-associated serious cardiovascular, gastrointestinal, and/or renal adverse reactions. If the anticipated benefit for the elderly patient outweighs these potential risks, start dosing at the low end of the dosing range, and monitor patients for adverse effects [see Warnings and Precautions ( 5.1, 5.2, 5.3, 5.6, 5.13)].
Diclofenac is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.
ZIPSOR is contraindicated in the following patients:
- Known hypersensitivity (e.g., anaphylactic reactions and serious skin reactions) to diclofenac or any components of the drug product [see Warnings and Precautions ]
- History of asthma, urticaria, or other allergic-type reactions after taking aspirin or other NSAIDs. Severe, sometimes fatal, anaphylactic reactions to NSAIDs have been reported in such patients [see Warnings and Precautions ]
- In the setting of coronary artery bypass graft (CABG) surgery [see Warnings and Precautions ]
- ZIPSOR contains gelatin and is contraindicated in patients with known hypersensitivity to bovine protein.